Skip to article frontmatterSkip to article content

Identity for the Odd Double Factorial


It holds

(ddz+z)nz=0={(n1)!!Product of all odd numbers up to n-1neven0nodd, \left(\frac{\text{d}}{\text{d}z} + z \right)^n \vert_{z=0} = \begin{cases} (n-1)!! \equiv \text{Product of all odd numbers up to n-1} & n \quad \text{even} \\ 0 & n \quad \text{odd}, \end{cases}

which I personally do not find obvious.

Proof

To see this, consider Wick’s theorem (Dz=ddz)\left(D_z = \frac{\text{d}}{\text{d}z}\right).

Dznez2/2z=0={(n1)!!neven0noddD_z^n e^{z^2/2} \vert_{z=0} = \begin{cases} (n-1)!! \qquad & n \quad \text{even} \\ 0 \qquad & n \quad \text{odd} \end{cases}

This can be checked by expanding the exponential and differentiating term by term. We have for sufficiently well-behaved functions f=f(z),p=p(z)f=f(z),p = p(z)

Dzfep=(fDzp+Dzf)ep=((Dzp)+Dz)fep. D_z f e^{p} = (f D_zp + D_zf) \cdot e^{p} = ( \left(D_z p\right) + D_z)f \cdot e^{p}.

Note that the differential operator does not act on epe^{p} anymore. Iteration gives

Dznfep=((Dzp)+Dz)nfep. D_z^n f e^{p} = ( \left(D_z p \right) + D_z)^nf \cdot e^{p}.

Choosing f=1,p=z2/2f=1, p = z^2/2 together with Wick’s theorem concludes the proof. We can use this identity to find a representation of the Gamma function at n+12n + \frac{1}{2} as

Γ(n+12)=π2n(Dz+z)2nz=0. \Gamma(n + \frac{1}{2}) = \frac{\sqrt{\pi}}{2^n} \left( D_z + z \right)^{2n}\vert_{z=0}.

Check

Check this for some even nn (abuse notation: f(0)fz=0f(0) \equiv f\vert_{z=0})

(Dz+z)2(0)=(Dz+z)(Dz+z)1(0)=(Dz+z)z(0)=(1+z2)(0)=1=(21)!!(Dz+z)4(0)=Dz2z2+(Dzz)2=3=(41)!!(Dz+z)6(0)=Dz3z3+Dz2zDzz2+2Dz2z2Dzz+(Dzz)3=6+4+22+1=15=(61)!!\begin{align} &(D_z + z)^2 (0) = (D_z + z)(D_z + z)1 (0) = (D_z + z)z (0) = (1 + z^2)(0) = 1 = (2-1)!! \\ &(D_z + z)^4 (0) = D_z^2 z^2 + (D_z z)^2 = 3 = (4-1)!!\\ &(D_z + z)^6 (0) = D_z^3 z^3 + D_z^2 z D_z z^2 + 2 D_z^2 z^2 D_z z + (D_z z)^3 = 6 + 4 + 2 \cdot 2 + 1 = 15 = (6-1)!! \end{align}

For odd nn, this is clear, because expanding the brackets always produces terms with an unequal number of DzD_z and zz, which are either zero or non-constant.